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The organization of the human cerebral cortex has recently been explored using techniques for parcellating the
cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical ana-
tomic connections suggests the need to consider the possibility of regions belonging to multiple networks and
hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial indepen-
dent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that corti-
cal regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics
Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP).
The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the
more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function
as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis.
Many association regions belong to at least two networks, while somatomotor and early visual cortices are espe-
cially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and
posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the
default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homo-
logue participate in multiple hierarchically organized networks. These observations were replicated in both
datasets and could be detected (and replicated) in individual subjects from the HCP.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Distributed neocortical brain areas form large-scale networks that
exhibit complex patterns of divergent and convergent connectivity
(e.g., Felleman and Van Essen, 1991; Goldman-Rakic, 1988; Jones and
Powell, 1970; Mesulam, 1981; Pandya and Kuypers, 1969; Ungerleider
and Desimone, 1986). A major challenge in systems neuroscience is to
make sense of these connectivity patterns to infer functional organiza-
tion. In the visual system, connectivity patterns suggest a separation of
processing into largely parallel, but interacting, hierarchical pathways
(Felleman and Van Essen, 1991; Ungerleider and Desimone, 1986). In
contrast, the association cortex comprises networks of widely distribut-
ed and densely interconnected areas without rigid hierarchical organi-
zation (Goldman-Rakic, 1988; Selemon and Goldman-Rakic, 1988; but
see Badre and D'Esposito, 2009).

Resting-state functional connectivityMRI (rs-fcMRI) provides a pow-
erful, albeit indirect, approach to make inferences about human cortical
organization (Biswal et al., 1995). Despite its limitations (Buckner et al.,
l School, 8 College Road, Level 6,

ghts reserved.
2013), we and others have used functional connectivity to estimate cor-
tical network patterns (e.g., Bellec et al., 2010; Damoiseaux et al., 2006;
He et al., 2009; Margulies et al., 2007; Power et al., 2011; Smith et al.,
2009; van den Heuvel et al., 2009; Yeo et al., 2011).

The majority of functional connectivity studies have focused on dis-
sociating functionally distinct networks or modules (Beckmann et al.,
2005; Calhoun et al., 2008; Craddock et al., 2012; Damoiseaux et al.,
2006; De Luca et al., 2006; Dosenbach et al., 2007; Doucet et al., 2011;
Fox et al., 2006; Greicius et al., 2003; Margulies et al., 2007; Rubinov
and Sporns, 2011; Salvador et al., 2005; Seeley et al., 2007; Smith
et al., 2009; van den Heuvel et al., 2009; Varoquaux et al., 2011).
Fewer studies have examined the relationships among different func-
tional networks (Sepulcre et al., 2012a; Sporns, 2013). For example,
Fox et al. (2005) and Fransson (2005) have investigated the antagonis-
tic relationship between the default and task-positive networks. Others
(Doucet et al., 2011; Lee et al., 2012; Meunier et al., 2009) have investi-
gated the (spatial) hierarchical relationship across functional networks.

We previously employed a mixture model that relied on a winner-
takes-all assumption to map network topography in the human cerebral
cortex (Yeo et al., 2011). Each brain regionwas assigned to a single, best-
fit network allowing us to derive connectivity maps that emphasize the
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interdigitation of parallel, distributed association networks. The key fea-
tures of this parallel organization are that (1) each association network
consists of strongly coupled brain regions spanning frontal, parietal, tem-
poral, and cingulate cortices, and (2) the components of multiple net-
works are spatially adjacent (Yeo et al., 2011; also see Vincent et al.,
2008; Power et al., 2011).

However, it is unlikely that the brain is simply parcellated into a dis-
crete number of nonoverlapping networks (Mesulam, 1998). Interac-
tions across networks, as well as the existence of ‘convergence zones’
of regions that participate in multiple networks, are likely important
features of brain organization (Beckmann et al., 2005; Bullmore and
Sporns, 2009; Fornito et al., 2012; Jones and Powell, 1970; Mesulam,
1998; Pandya and Kuypers, 1969; Power et al., 2013; Sepulcre et al.,
2012b; Spreng et al., 2010). Relevant to this point, we have observed
variability in the goodness of fit of certain regions to their winner-
takes-all network (Figs. 8 and 10 of Yeo et al., 2011), consistent with
the notion that certain brain regions might participate in multiple net-
works (Andrews-Hanna et al., 2010; Beckmann et al., 2005; Leech
et al., 2011; Rubinov and Sporns, 2011; Sporns et al., 2007).

Here,we address the possibility ofmultiple networkmembership by
applying latentDirichlet allocation (LDA; Blei et al., 2003) and spatial In-
dependent Component Analysis (ICA; Calhoun et al., 2001; Beckmann
and Smith, 2004) to examine the topography of overlapping networks.
This is an important consideration because network topography may
change substantially from our original estimates (Yeo et al., 2011) if
constraints are relaxed to permit overlapping networks. Conversely, un-
biased estimation of network topographymaybroadly confirmprevious
estimates and allow us to investigate the interactions and overlaps
among networks.

Materials and methods

Overview

We applied the LDA model to resting-state data from 1000 healthy
young adults from the Brain Genomics Superstruct Project (GSP), as
well as to 12 high quality, high-resolution individual subject datasets
from the Human Connectome Project (HCP; Van Essen et al., 2013).
The large sample size in GSP and the multiple sessions of individual
HCP subjects permitted us to quantify patterns of cortico-cortical cou-
pling that reveal insights into interactions within and across functional
networks. Analyses proceeded in four stages. First, we applied the mix-
ture model (Yeo et al., 2011) and LDA model (Blei et al., 2003) to both
the GSP and HCP group datasets, in order to examine how cortical net-
work organization changes as regions are permitted to participate in
multiple networks (Fig. 1). For this analysis, the GSP and HCP datasets
were used to provide independent replication samples. Next,we further
analyzed several cortical regions participating inmultiple sub-networks
(Figs. 2 to 4). We then exploited the high quality, multi-session HCP
data to determine if network organization can be estimated and repli-
cated in individual subjects (Figs. 5 and 6). This increased the confi-
dence that the discovered network organization was not merely a
consequence of averaging across subjects. Additional control analyses
confirmed similar network organization regardless of whether global
signal regression was performed during preprocessing (Supplemental
Fig. 7) and across degenerate (i.e., not highest likelihood) network esti-
mates (Figs. 7 and 8).

Datasets

The GSP subjects were between ages 18–35 (mean age = 21.3;
42.7% male). Participants underwent one or two runs of eyes open
rest (EOR). Analyses of the GSP data have been published previously
(e.g., Buckner et al., 2011; Choi et al., 2012; Yeo et al., 2011). The HCP
subjects were between ages 26–35 (mean age estimate = 30.9; 16.7%
male). HCP provides aggregated data concerning age, hence mean age
can only be estimated. HCP participants underwent two runs of passive
fixation (FIX) in each of two separate sessions, for a total of four runs
(~24 h interval between sessions).

GSP MRI data acquisition and preprocessing

Data were acquired on 3 T Tim Trio scanners (Siemens, Erlangen,
Germany) using a 12-channel phased-array head coil. Functional data
consisted of gradient-echo echo-planar images (EPI) sensitive to blood
oxygenation level-dependent (BOLD) contrast. Parameters for the rest-
ing data were: repetition time (TR) = 3000 ms, echo time (TE) =
30 ms, flip angle (FA) = 85°, 3 × 3 × 3 mm voxels, field of view
(FOV) = 216, and 47 axial slices collected with interleaved acquisition.
Slices were oriented along the anterior commissure–posterior commis-
sure plane. Functional runs lasted 6.2 min (124 time points). Structural
data included a multiecho T1-weighted magnetization-prepared
gradient-echo (MP-RAGE) image (van der Kouwe et al., 2008).

fMRI processing steps included 1) discarding the first four frames of
each run, 2) correcting for slice acquisition-dependent time shifts in
each volume with SPM2 (Wellcome Department of Cognitive Neurolo-
gy, London, UK), and 3) correcting for head motion using rigid body
translation and rotation parameters (FSL; Jenkinson et al., 2002; Smith
et al., 2004). This was followed by standard functional connectivity pre-
processing (Fox et al., 2005; Van Dijk et al., 2010; Vincent et al., 2006).
Linear trends over each run were removed and a low-pass temporal fil-
ter retained frequencies below 0.08 Hz. Spurious variancewas removed
using linear regression with terms for head motion, whole brain signal,
ventricle signal, white matter signal and their derivatives.

Individual participants' T1 scans were reconstructed into surface rep-
resentations using FreeSurfer (http://surfer.nmr.mgh.harvard.edu; Fischl,
2012). Functional data were registered to structural images using
FreeSurfer's FsFast package (Greve and Fischl, 2009; http://surfer.nmr.
mgh.harvard.edu/fswiki/FsFast). The structural preprocessing and struc-
tural–functional data alignment steps were described in Yeo et al.
(2011). Functional data were projected onto the FreeSurfer surface
space (2 mm mesh), smoothed on the surface using a 6 mm full-width
half-maximum kernel, and were then downsampled to a 4 mmmesh.

HCP MRI data acquisition and preprocessing

HCPdatawere part of theHCP initial October 2012public data release
(http://www.humanconnectome.org/data). Data were acquired on a 3 T
Skyra scanner (Siemens, Erlangen, Germany) using a standard 32-
channel head coil. The scanner has a customized SC72 gradient insert
and a customized body transmitter coil with 56 cm bore size. The HCP
Skyra has the standard set of Siemens shim coils (up to 2nd order). Func-
tional data consisted of gradient-echo EPI sensitive to BOLD contrast.
Parameters for the resting data were: TR = 720 ms, TE = 33.1 ms,
FA = 52°, 2 × 2 × 2 mm voxels, FOV = 208 × 180 mm, and 72
oblique axial slices alternated between phase encoding in a right to left
direction in one run and phase encoding in a left to right direction in
the other run (Feinberg et al., 2010; Moeller et al., 2010; Setsompop
et al., 2012; Xu et al., 2012). Each functional run lasted 14.55 min (1200
timepoints). Structural data included a T1-weightedMP-RAGE image. Pa-
rameters for the structural scan were as follows: TR = 2400 ms,
TI = 1000 ms, TE = 2.14 ms, FA = 8°, 0.7 × 0.7 × 0.7 mm voxels and
FOV = 224 × 224 mm. More details of the acquisition strategy can be
found in Van Essen et al. (2012).

We utilized the fMRI preprocessed data released by the HCP (Glasser
et al., 2013). fMRI processing steps included 1) gradient distortion cor-
rection (Jovicich et al., 2006, 2) motion correction, 3) distortion correc-
tion, 4) registration to the T1 scan (Greve and Fischl, 2009), 5) spline
resampling to FSL MNI152 2 mm space using FSL FNIRT (Jenkinson
et al., 2002; Smith et al., 2004), and 6) intensity normalization to mean
of 10,000 and bias field correction. This was followed by standard func-
tional connectivity preprocessing as in theGSPdataset. The preprocessed

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
http://www.humanconnectome.org/data
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fcMRI data were projected from FSL MNI152 space onto the FreeSurfer
surface space (1 mm mesh), smoothed using a 6-mm full-width half-
maximum kernel and downsampled to a 4 mm mesh. The nonlinear
mapping between FSL MNI152 volumetric space and FreeSurfer surface
space is detailed in Buckner et al. (2011).
Clustering

The method of clustering cerebral cortical data has been previously
described (Yeo et al., 2011). Briefly, for each subject, the Pearson's prod-
uct moment correlation was computed between each surface vertex
(N = 18,715) and 1175 uniformly distributed cortical regions of inter-
est (ROIs). The “connectivity profile” of each surface vertexwas its func-
tional coupling to these ROIs. Each participant's 1175 × 18,715 matrix
of correlationswas binarized to retain the top 10% of correlations before
summing across subjects to obtain an overall group estimate P. There-
fore, the ith row and jth column of thematrix P was the number of sub-
jects whose correlations between the ith vertex and jth ROI are within
the top 10% of correlations (within each individual subject). In other
words, each matrix component took on integer values from 0 to 1000
in theGSP dataset. The connectivity profiles were clustered using amix-
ture of von Mises–Fisher distributions (Lashkari et al., 2010; Yeo et al.,
2011). We repeated the clustering algorithm 1000 times with different
random initializations and selected the estimate with best model likeli-
hood. Formore details, we refer readers to Lashkari et al. (2010) andYeo
et al. (2011). Because our previous analyses (Yeo et al., 2011) identified
solutions with 7 and 17 network clusters to be particularly stable, we
adopted these for the present study.
Latent Dirichlet Allocation (LDA)

LDA was first introduced in the text mining literature (Blei et al.,
2003). The application of LDA to estimate overlapping modules (net-
works) in graphs has been previously proposed (Zhang et al., 2007).
Here, we employed LDA to estimate cortical networks from resting-
state fMRI data.

Like spatial independent component analysis (ICA; Beckmann and
Smith, 2004), LDA permits a brain region to belong to multiple net-
works. Both ICA (Beckmann and Smith, 2004) and LDA (Hoffman
et al., 2010) seek to factorize a matrix M into a product of two matrices
W and H. Because there are an infinite number of ways to factorize a
matrix, additional constraints are required.

In the case of spatial ICA applied to fMRI, the spatial weights of the
estimated networks (components) are constrained to be independent
(Beckmann et al., 2005; Calhoun et al., 2001), but can take on negative
values. LDA is closely related to non-negative matrix factorization
(Hoffman et al., 2010). When applied to resting-state fMRI data in this
paper, LDA constrains the spatial weights of the estimated networks
to be non-negative (in addition to other constraints). We refer interest-
ed readers to Blei et al. (2003) for the probabilistic (and more well-
known) interpretation of LDA.

In this work, we used LDA to factorize the 1175 × 18,715 matrix P
(see the previous “Clustering” section) into the product of twomatrices
W (1175 × K) by H (K × 18,715), where K is the number of networks.
The k-th row of the matrix H sums to one over all 18,715 vertices of
the cerebral cortex. We can interpret the k-th row as the probability
that the k-th functional connectivity network includes a particular sur-
face vertex Pr(vertex | k-th network).

To compare the clustering and LDA results, we consider 7 and 17
networks in this paper. The LDA model is estimated with 100 random
initializations. The estimate with the best likelihood bound is selected.
The LDA code is publicly available.1
1 http://www.cs.princeton.edu/~blei/lda-c/
Spatial independent component analysis (spatial ICA)

We applied spatial ICA (FSL melodic 3.10; Beckmann and Smith,
2004) to the surface projected fcMRI-preprocessed data. We estimated
20 ICA components because of precedence (e.g., Smith et al., 2009)
and because “20” is close to the number of networks (“17”) we sought
in the clustering and LDA models. We also experimented with 17 inde-
pendent components, as well as applying ICA directly to raw volumetric
fMRI data before projecting the spatial components to the surface. The
results were similar across these different experiments and so for con-
ciseness, we will focus on the 20 ICA components estimated from
surface-projected fcMRI-preprocessed data.
Matching networks between datasets and methods

Since the ordering of the networks (or components) estimated using
different methods and datasets is arbitrary, we used the Hungarian
matching algorithm (Kuhn, 1955) to find the correspondences between
networks estimated with different methods and datasets. Essentially,
the networks were relabeled so as to maximize the spatial agreement
between corresponding networks.

In particular, HCP clustering estimates were reordered to match the
GSP clustering estimates by maximizing the number of vertices belong-
ing to corresponding networks across the datasets. Similarly, the HCP
LDA estimates were reordered tomatch the GSP LDA estimates bymax-
imizing the correlation between Pr(vertex | network) of corresponding
networks across datasets.2

To match clustering estimates with LDA estimates, we thresholded
the LDA estimates to obtain winner-takes-all parcellations. The cluster-
ing estimates were then reordered to match the winner-takes-all LDA
estimates by maximizing the number of vertices belonging to corre-
sponding (winner-takes-all) networks across methods.

Finally, we found 17 of the 20 ICA components that best correspond
to the 17 LDA estimates by maximizing the correlation between
Pr(vertex | LDA network) and the un-thresholded, Z-score ICA maps of
corresponding networks across methods.
Visualization

Clustering, LDA and ICA estimateswere transformed fromFreeSurfer
surface space (Dale et al., 1999; Fischl et al., 1999a,b) to the PALS-B12
surface space for visualization using Caret (Van Essen, 2005). Network
colors match Yeo et al. (2011). Lines representing clustering boundaries
were smoothed to remove high spatial frequency jaggedness resulting
from mapping the data to PALS space.
Comparison of network estimates in GSP and HCP datasets

The 7-network clustering and LDA analyses of the GSP and HCP
datasets are shown in Fig. 1. Since each LDA network comprises a prob-
ability distribution over vertices Pr(vertex | network), we can visualize
each distribution as a map over the cortex. Because LDA is a Bayesian
model, there is no obvious threshold for displaying the probability
maps. Given that there are 18,715 vertices and the probability dis-
tribution sums to one over all the vertices, any probability larger than
1/18,715 is above expectation. Here, we chose a relatively stringent
threshold of 1e−4 (roughly two times 1/18,715). The LDA estimates
in Fig. 1 were overlaid on the boundaries of the respective 7-network
clustering estimates in the GSP and HCP datasets. The boundaries
allowed the comparison between the clustering and LDA estimates.

The 17-network clustering and LDA analyses of the GSP and HCP
datasets are shown in Figs. 3 and 4. Because of the small number of
2 Using a different measure (e.g., KL-divergence) achieves the same results.

http://www.cs.princeton.edu/~blei/lda-c/
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subjects in the HCP dataset, wewill focus our interpretation on the sim-
ilarities, rather than the differences, between the HCP and GSP
estimates.

Supplemental Figs. 1 and 2 juxtapose 7 of the 17 corresponding LDA
networks and ICA components in the GSP and HCP datasets respective-
ly. To foreshadow the results, ICA and LDA provide very similar network
estimates, except for negative spatial weights in the ICA estimates. Both
ICA and LDA decompose a signal into a linear combination of compo-
nent signals (Lee and Seung, 1999). For LDA, only additive combinations
are allowed. This is in contrast with ICA, which may allow component
signals to cancel each other out via subtractions (Lee and Seung,
1999). Therefore, the non-negativity constraints in LDA are compatible
with the intuitive notions of combining parts to form a whole (Lee
and Seung, 1999). It may be the case that the negative spatial weights
in ICA are functionally meaningful, but assessment is difficult since
ground-truth network estimates are not available. Consequently, we
chose to focus on the LDA results.3
Robustness to number of networks

As discussed in our previous paper (Yeo et al., 2011), the focus on
7-network and 17-network solutions should not be taken to imply
that meaningful properties are absent in alternative parcellation
schemes. By focusing on both a relatively coarse solution (7 net-
works) and a fine-resolution solution (17 networks), we hoped to
capture broad aspects of the solution space that were consistent
within these relative extremes. However, we observed stable results
for other network parcellations as well (e.g. 10 &12 networks, see
Fig. 6 of Yeo et al., 2011). To ensure our present results are robust
to the choice of 7 and 17 networks, we estimated 4, 6, 8, 10, 12, 16,
18 and 30 networks by applying clustering and LDA to the GSP
dataset (Supplemental Fig. 3).
Quantifying overlap between networks

To assess the overlap between networks, we computed Pr
(network | vertex) for each vertex by applying Bayes' rule to
Pr(vertex | network) and assuming each network is equally likely, i.e.,
Pr(network) = 1/K. Since Pr (network | vertex) sums to 1 over the es-
timated K networks, any probability larger than 1/K is above expecta-
tion. For each vertex, we consider the number of networks with
Pr(network | vertex) above 1/K as a rough measure of the number of
networks the vertex is participating in. Fig. 2A shows the map of the
number of networks each vertex participates in. For this analysis we
focus on the most stable solution — 7-network LDA results for the GSP
dataset.

To quantify the distribution ofmultiple-network participation across
the cerebral cortex,we computed the fraction of vertices participating in
more than one LDA network for each network of the 7-network cluster-
ing estimates (Fig. 2B). Vertices within 10 mm of clustering boundaries
were excluded from this analysis because they might reflect uncer-
tainties in the network estimates.We also computed the fraction of ver-
tices participating in more than one LDA network for each winner-
takes-all LDA network (Supplemental Fig. 4). Vertices within 10 mm
of the winner-takes-all LDA boundaries were excluded from this
analysis.

To ensure the above analysis was robust to the choice of threshold
for Pr (network | vertex), we repeated the analysis using a more liberal
threshold of 0.75/K and a more conservative threshold of 1.25/K (Sup-
plemental Fig. 5). We also repeated the analysis with 6-network and
8-network LDA estimates to ensure our results were robust to the
choice of number of networks (Supplemental Fig. 6).
3 This negative spatial weight issue is different from the anti-correlations issue
discussed in the functional connectivity literature (Fox et al., 2009; Murphy et al., 2009).
As the results will show, the default and dorsal attention networks
have the greatest proportion of regions participating in multiple net-
works. Therefore, we identified brain regions that (1) were at least
10 mm away from both 7-network clustering and winner-takes-all LDA
boundaries, (2) participated in multiple networks from the 7-network
estimate and either (3a) participated in multiple networks (from the
17-network LDA estimate) that overlapped significantly with the default
network or (3b) participated inmultiple networks (from the 17-network
LDA estimate) that overlapped significantly with the dorsal attention
network. We explored the participation of these regions in multiple net-
works from the 17-network LDA estimates (Figs. 3 and 4).

LDA estimates in individual subjects

To ensure the network organization we discovered was not an arti-
fact of intersubject averaging, we applied the 7-network LDA model to
individual sessions of each HCP subject. This also allowed us to evaluate
the test–retest reliability of the LDA estimates. The LDA estimates of
both sessions of subjects with the best (Fig. 5) and median (Fig. 6)
test–retest reliability are juxtaposed.

Global signal regression

The regression of global signal during fcMRI preprocessing can intro-
duce negative correlations between brain regions (Fox et al., 2009;
Murphy et al., 2009). To ensure the network organization we discov-
ered was robust to variations in fcMRI preprocessing, we randomly se-
lected a subset of 100 subjects from theGSP dataset and processed them
without global signal regression. We referred to this data as the non-
GSR dataset. We then estimated 7 and 17 networks from this non-GSR
dataset using both vonMises–Fisher clustering and LDA (Supplemental
Fig. 7).

Degenerate high-likelihood clustering and LDA estimates

While we have focused on network estimates with the highest like-
lihood, there might be degenerate or alternate network estimates with
high likelihood values that are topologically distinct from the best esti-
mates (Good et al., 2010). Given that these degenerate estimates have
likelihood values close to the best estimate, slight variations of the orig-
inalmodelsmight result in these alternate network estimates becoming
the best solutions. Consequently, we employed two different ap-
proaches to explore whether the network organization of the degener-
ate solutions agrees with that of the best estimate (c.f. Rubinov and
Sporns, 2011).

First, we assessed whether degenerate estimates exhibited parallel
large-scale networks in association cortex by exploring the solution
space of the von Mises–Fisher mixture model obtained from 1000 dif-
ferent random initializations. We computed the overlap agreement be-
tween each of the 1000 estimates and the best estimate in the GSP
dataset (Fig. 7A). In addition, we computed an “exhaustive” set of 7-
network clustering estimates that are representative of the 1000 ran-
dom initializations (Fig. 7B).We determined this “exhaustive” set as fol-
lows. We first initialized the “exhaustive” set to consist only of the best
clustering estimate (i.e., estimate with the highest likelihood). We then
iterated the following procedure until convergence: At each iteration,
among all clustering estimates with less than 80% overlap with the cur-
rent “exhaustive” set of clustering estimates, we added the clustering
estimate with the highest likelihood to the “exhaustive” set. The proce-
dure therefore allowed us to select a subset of clustering solutions that
were the most different from each other and spanned the solution
space of the mixture model. The 80% overlap threshold was chosen be-
cause we found (empirically) that estimates with more than 80% over-
lap were extremely similar (visually).

Second, to assess whether degenerate estimates exhibited the prop-
erty that many association regions participated in multiple networks,
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we computed the number of networks each vertex participates in, aver-
aged across the 100 random initializations of the 7-network and 17-
network LDA (Fig. 8).

Results

Clustering estimates of GSP and HCP datasets

The 7-network clustering estimates of the GSP and HCP datasets
were similar (top row of Fig. 1), with 78% of vertices identically labeled
GSP (N = 1000)

1e-4

Fig. 1. Large-scale network organization is reliable across datasets (GSP and HCP) and acrossme
and HCP datasets in the left hemisphere. Overlap (fraction of vertices with same network label
blue, green, violet and orange) of the seven networks were virtually identical. Bottom rows sho
corresponding to the clusteringestimates of respective datasets. All seven LDAnetworkswerehi
of the seven pairs of LDA network estimates was 0.93. The colored squares (center column) in
estimate in the second row corresponds to the purple visual cluster. The percent overlap betw
the overlap in the HCP dataset was 88%.
within the entire cerebral cortex. Five of the networks were highly sim-
ilar across the two datasets, with overlaps between the somatomotor
(blue) and visual (purple) networks at more than 90%. Notable dif-
ferences included portions of the default (red) network in the
GSP dataset classified as part of the limbic (cream) network in the
HCP dataset. This may relate to differences in signal-to-noise
around regions of high susceptibility (which severely influences es-
timates of the limbic network). The overlap of the 17-network clus-
tering estimates (not shown) between the GSP and HCP datasets
was 69%.
HCP (N = 12)

5e-4

thods (clustering and LDA). Top row shows the 7-network clustering estimates of the GSP
s) between GSP and HCP estimates was 78% across the entire cerebral cortex. Five (purple,
w the 7-network LDA estimates of the GSP and HCP datasets overlaid on blue boundaries
ghly similar across the twogroupdatasets. Themean of the Pearson correlation coefficients
dicate correspondences between the LDA and clustering estimates. For example, the LDA
een the clustering and winner-takes-all LDA estimates in the GSP dataset was 82%, while



Fig. 2. Regions of association cortex often participate in multiple cortical networks. Early
sensory and late motor cortices are involved in fewer networks than many association re-
gions. (A) The colors represent the number of LDA networks each cortical region partici-
pates in for the 7-network LDA estimate in the GSP dataset. The number was computed
by counting for each vertex the number of networks whose Pr(network | vertex) exceeds
1/7. Boundaries correspond to 7-network clustering solution inGSPdataset. The black aster-
isks correspond to default network regions that (1)were at least 10 mmfromboth the clus-
tering andwinner-takes-all LDA boundaries and (2) participated in multiple networks. The
blue asterisks correspond to dorsal attention regions that (1) were at least 10 mm from
both the clustering and winner-takes-all LDA boundaries and (2) participated in multiple
networks. Table 1 reports the MNI coordinates of the six regions. (B) Fraction of vertices
within the 7-network clustering estimates participating inmultiple networks. Only vertices
at least 10 mm away from the clustering boundaries are considered. The dotted line indi-
cates that 44% of the vertices (at least 10 mm away from clustering boundaries) par-
ticipated in multiple networks. Visual: Visual network; SomMot: somatomotor network;
DorsAttn: dorsal attention network; VentAttn: ventral attention network; Control:
frontoparietal control network; Default: default network; Limbic: limbic network.
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LDA estimates of GSP and HCP datasets

The 7-network LDA estimates of theGSP andHCP datasetswere sim-
ilar (rows 2–8 of Fig. 1). The mean of the Pearson correlations of the
seven pairs of LDA network estimates was 0.93. The worst pair of net-
works was correlated at 0.91. The mean pairwise correlation of the
17-network LDA estimates was 0.82. Details of several example net-
works are discussed below.
ICA estimates of GSP and HCP datasets

The LDA and ICA estimates were similar in the GSP (Supplemental
Fig. 1) and HCP (Supplemental Fig. 2) datasets. The means of the Pear-
son correlations between 17 corresponding pairs of networks were
0.72 in the GSP dataset and 0.62 in the HCP dataset. Given the similari-
ties between ICA and LDA (except for the negative spatialweights in the
ICA estimates), we will focus on the LDA estimates.

Broad properties of clustering and LDA estimates of cortical organization
are similar

A critical question is the degree to which the winner-takes-all and
LDA approaches converge on the same basic network organization.
The agreement between the 7-network clustering and LDA estimates
can be visually appreciated by looking at the correspondences between
the LDA estimates and clustering boundaries (rows 2–8 in Fig. 1).

The overlap between the 7-network clustering estimates and the
winner-takes-all LDA estimates in the GSP dataset was 82%, while the
overlap in the HCP dataset was 88%. The overlap between the 17-
network clustering estimates and the winner-takes-all LDA estimates
in the GSP dataset was 70%, while the overlap in the HCP dataset was
63%.

Robustness to number of networks

The focus on 7- and 17-network estimates should not be taken to
imply that meaningful properties are absent in alternative parcellation
schemes. We found similar agreement between the clustering and
LDA estimates for 4, 6, 8, 10, 12, 16, 18 and 30 networks in the GSP
dataset; the overlap agreement between the clustering estimates and
the winner-takes-all LDA estimates were 98%, 71%, 85%, 77%, 84%, 74%,
64% and 55% respectively. Supplemental Fig. 3 shows the clustering es-
timates for the different number of networks.

The qualitative visualization and quantitative estimates suggest that
the broad topographic organization of cortical networks (Yeo et al.,
2011) is not an artifact of the requirement that each cortical region
must belong to a single network. Nonetheless, differences do emerge
from the two approaches, and these are the focus of the remaining
results.

Association cortex shows more pervasive network participation than visual
and somatomotor cortices

As a first step in visualizing properties of cortical organization re-
vealed by LDA, we plotted the number of networks each cortical region
participates in for the 7-network LDA estimates in the GSP dataset
(Fig. 2A). This number was obtained by counting for each vertex the
number of networks whose Pr(network | vertex) exceeded 1/7. What
is immediately apparent is thatmany cortical association regions partic-
ipate in at least two functional connectivity networks.

To quantify the distribution of multiple-network participation
across the cerebral cortex, the fraction of vertices participating inmulti-
ple LDA networks for each network of the 7-network clustering esti-
mates is shown in Fig. 2B. Vertices within 10 mm of clustering
boundaries were excluded because they might reflect uncertainties in
the network estimations. The dotted line indicates that 44% of the verti-
ces (that are at least 10 mm away from clustering boundaries) partici-
pate in multiple networks.

Many cortical association regions participated in at least two func-
tional connectivity networks (Fig. 2B). This was in contrast with large
portions of early sensory and late motor cortices that participated in a
single network. In particular, the dorsal attention network, the ventral
attention network, the frontoparietal control network and the default
network had above average numbers of cortical vertices participating
in multiple networks. In contrast, the visual network, the somatomotor



Fig. 3. The precuneus (PCUN), lateral temporal cortex (LTC), posterior parietal cortex (PPC) and medial prefrontal cortex (MPFC) participate in multiple subnetworks. (A) 17-network clus-
tering estimates of theGSP andHCPdatasets. Only left hemisphere estimates are shown. Thepercent overlap between the clustering estimates in the twodatasetswas 69%. (B) Four of the 17-
network LDA estimates overlapping traditional default network regions are shown. The LDA networks in the 1st, 2nd and 4th panels overlap with the yellow, red and dark-blue networks in
(A) respectively. Panel 3 shows the LDAnetwork that overlapswith the gold and creamnetworks in (A). Theasterisks correspond to thedefault regions (PCUN, LTC, PPC andMPFC) defined in
Table 1. An asterisk is colored black if Pr (vertex | network) N 1e−4 at that brain location.
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network and the limbic network had below average number of cortical
vertices participating in multiple networks.

We obtained consistent results when we computed the fraction of
vertices participating in multiple LDA networks for each winner-takes-
all LDA network (Supplemental Fig. 4) or when we repeated the analy-
ses with different thresholds (Supplemental Fig. 5) or different number
of networks (Supplemental Fig. 6).

Across analyses (Fig. 2B and Supplemental Figs. 4 to 6), the default
and dorsal attention networks had the largest proportions of brain ver-
tices participating in multiple networks. To explore this phenomenon
further, we identified brain regions in the left hemisphere that (1)
were at least 10 mm away from both clustering and winner-takes-all
LDA boundaries, (2) participated in multiple networks from the 7-
network estimate and (3) participated in multiple networks (from the
17-network LDA estimate) that overlapped significantly with the de-
fault network (from the 7-network estimate). Four regionswere identi-
fied (black asterisks in Fig. 2A): precuneus (PCUN), lateral temporal
cortex (LTC), posterior parietal cortex (PPC) and medial prefrontal
cortex (MPFC). Their MNI coordinates are reported in Table 1. It is
worth pointing out that the PCUN region was surrounded by a band of
regions participating in only one network, suggesting that its participa-
tion inmultiple networkswasnot due to spatial blurring across network
boundaries.

We also selected brain regions in the left hemisphere that (1) were
at least 10 mm away from both clustering and winner-takes-all LDA
boundaries, (2) participated in multiple networks from the 7-network
estimate and (3) participated in multiple networks (from the 17-
network LDA estimate) that overlapped significantly with the dorsal at-
tention network (from the 7-network estimate). Two regions were
identified (blue asterisks in Fig. 2A) and they are putative homologues
of macaque areas LIP (lateral intraparietal) and FEF (frontal eye fields)
based on a meta-analysis of fMRI literature (Yeo et al., 2011). Coordi-
nates of these two regions are reported in Table 1.

We now explore the participation of the default regions in multiple
paralimbic networks and the dorsal attention regions inmultiple hierar-
chically organized networks in the 17-network LDA estimates.
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Fig. 4. The lateral intraparietal area (LIP) and frontal eye fields (FEF) participate inmultiple subnetworks. (A) 17-network clustering estimates of the GSP andHCP datasets. Only left hemi-
sphere estimates are shown. (B) Four of the 17-network LDA estimates overlapping traditional dorsal attention regions are shown. Panel 1 shows the LDA network that overlaps with the
red and purple networks in (A). The LDA networks in the 2nd, 3rd and 4th panels overlap with the light-green, dark-green and orange networks in (A) respectively. The asterisks corre-
spond to LIP and FEF defined in Table 1. An asterisk is colored black if Pr(vertex | network) N 1e−4 at that brain location.
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Overlapping components of multiple paralimbic networks

The 17-network clustering estimates in the GSP and HCP
datasets are juxtaposed in Fig. 3A. Fig. 3B shows four paralimbic
networks from the 17-network LDA estimates. The networks over-
lapped significantly with brain regions typically associated with
the default network. The asterisks (Fig. 3B) correspond to the de-
fault regions defined in Table 1. An asterisk is colored black if
Pr(vertex | network) N 1e−4 at that brain location. Therefore both
the PCUN and PPC regions preferentially participated in paralimbic
networks 1, 2 and 4; the MPFC region preferentially participated
in paralimbic networks 1, 3 and 4; the LTC region preferentially par-
ticipated in all four paralimbic networks.

FEF and LIP are involved in multiple hierarchically organized networks

The 17-network clustering estimates in the GSP and HCP datasets
are juxtaposed in Fig. 4A. Fig. 4B shows four networks from the 17-
network LDA estimates that overlap significantly with brain regions
typically associated with the dorsal attention network. These networks
are likely the homologue of the well-studied hierarchical visuomotor
pathway in macaques (Maunsell and Van Essen, 1983). The asterisks
(Fig. 4B) correspond to the dorsal attention regions defined in Table 1.
An asterisk is colored black if Pr(vertex | network) N 1e−4. Therefore
the LIP-homologue region preferentially participated in all four
networks, while the putative FEF region preferentially participated in
networks 2, 3 and 4. The visual hierarchy from early visual cortex to su-
perior parietal cortex and frontal eye fields was noted in Yeo et al.
(2011) via a series of seed-based functional connectivity analyses. As
this example illustrates, LDA detected overlap among functional net-
works comprising early retinotopic visual areas and other components
of this sensory-motor processing stream that were lost when making
a winner-take-all assumption.

Cortical network structure can be detected in individual subjects

Many research goals require analysis of imaging data at the individ-
ual subject level. The HCP dataset provides high quality datasets that are
obtained twice in participants over separate days. To ensure the net-
work organizationwe discoveredwas not an artifact of averaging across
subjects, we analyzed these data to determine whether LDA networks
could be detected within individual subjects and whether they would
show reliability.

Pairwise correlation of the 7-network LDA estimates between the
two sessions of each subject was 0.60 on average. The best subject had
a mean pairwise correlation of 0.75. The median subject had a mean
pairwise correlation of 0.61. Nine of the twelve subjects had average
correlations of at least 0.56, suggesting moderate reliability.

The 7-network LDA estimates of the best and median subjects
are shown in Figs. 5 and 6. The estimated networks were well
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Fig. 5. Cortical networks are reliable within individual subjects. LDA of the HCP subject with the best test–retest reliability estimates is displayed. Top row corresponds to the 7-network
clustering estimate of the entire HCP dataset. Bottom rows show the 7-network LDA estimates of the subject in two different sessions overlaid on the boundaries of the 7-network clus-
tering estimate. The mean of the Pearson correlation coefficients of the seven pairs of network estimates was 0.75. The dotted lines indicate correspondences between the LDA networks
across the two sessions. By visual inspection, the third and fourth networks in session 1 were merged in session 2, while the fifth network in session 1 was split into two in session 2.
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replicated across the two sessions even for the median subject.
This is consistent with previous assessments of test-retest reliabil-
ity of resting-state networks (Shehzad et al., 2009; Zuo et al.,
2010).

In both subjects (Figs. 5 and 6), the visual (row 1), somatomotor
(row 2) and paralimbic (rows 6 and 7) networks were well replicat-
ed. However, the dorsal attention (green), ventral attention (violet)
and frontoparietal control (orange) networks tended to inter-mix
across sessions (rows 3 to 5 of Figs. 5 and 6). This is not surprising
given that the regions from these networks are correlated (Fox
et al., 2006; Yeo et al., 2011). For example, dorsal attention regions
are known to correlate with ventral attention regions (Fox et al.,
2006; Yeo et al., 2011).
Choice of thresholding LDA estimates

We should emphasize that the choice of thresholding the LDA net-
works at 1e−4 was not critical for our analyses. While thresholding
Pr(vertex | network) networks was necessary to visualize the results,
statistics of agreement among different data-driven approaches and
datasets (Fig. 1, Supplemental Figs. 1 and 2) were computed indepen-
dent of the threshold. Similarly, statistics for test–retest reliability
(Figs. 5 and 6) were computed independent of the threshold. Finally,
given the relatively stringent threshold of 1e−4 (almost twice themin-
imal threshold of 1/18,715), using a lower threshold would simply con-
firm our broad point that different cortical regions identified in Table 1
were involved in multiple subnetworks (Figs. 3 and 4).
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Fig. 6. Similar to Fig. 5, LDA estimates of the HCP subject with themedian test–retest reliability is displayed. Format is identical to Fig. 5. Themean of the Pearson correlation coefficients of
the sevenpairs of network estimateswas 0.61. The dotted lines indicate correspondences between the LDAnetworks across the two sessions. By visual inspection, the third, fourth andfifth
networks in sessions 1 and 2 were inter-mixed across the sessions.
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Cortical network structure is invariant to global signal regression

To ensure the network organization we discovered was not an arti-
fact of global signal regression (GSR) during fcMRI preprocessing,we es-
timated7 and 17networks in the non-GSR dataset consisting of 100GSP
subjects processed without global signal regression. The 7-network and
17-network clustering estimates from the non-GSR dataset are shown
in Supplemental Fig. 7.We found excellent agreement between the net-
work estimates from the non-GSR and full GSP datasets. In particular,
the overlap of the 7-network clustering estimates was 95%, while the
overlap of the 17-network clustering estimates was 91% across the
two datasets. The mean pairwise correlation of the 7-network LDA
estimates was 0.99, while the mean pairwise correlation of the 17-
network LDA estimates was 0.85 across the two datasets.
Cortical network structure is replicated in degenerate network estimates

Finally, we assessed whether degenerate network estimates
reaffirmed the network organization we discovered. Fig. 7A plots the
overlap between the best 7-network clustering estimate and estimates
derived from the 1000 random initializations using the GSP dataset. The
clustering estimates were ordered from the highest likelihood (best esti-
mate) to the smallest likelihood. Out of 1000 random initializations, 415
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Fig. 7. Parallel network structure replicated across degenerate clustering estimates. (A) Overlap between the best 7-network clustering estimate and estimates derived from the 1000 ran-
dom initializations using the GSP dataset. The clustering estimates were ordered from the highest likelihood (best estimate) to the smallest likelihood. Out of 1000 random initializations,
415 resulted in solutionswith at least 90% overlapwith the best solution, suggesting the best estimate corresponds to a robust local optimum. (B) “Exhaustive” set of 7-network clustering
estimates. The eight clustering estimates were selected to be different from each other and spanned the solution space of themixturemodel. Similar to the best estimate, the early sensory
and latemotor cortices participated in preferentially local networks in all 7 degenerate solutions. Similarly, each association network spannedmultiple lobes and the components of mul-
tiple networks were spatially adjacent.
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resulted in solutions with overlap of over 90%with the best solution, sug-
gesting the best estimate corresponds to a robust local optimum.

Fig. 7B shows the “exhaustive” set of 7-network clustering estimates.
The eight clustering estimates were selected to be different from each
other and spanned the solution space of the mixture model. Even though
the seven “degenerate” clustering estimates do not have the highest like-
lihoods, they still explained interesting variance in the data. For example,
three degenerate solutions fractionate the somatomotor cortex into dor-
sal–ventral portions, just like in the best 17-network estimate (Fig. 3A).

Importantly, while the details of the clustering estimates varied, the
broad property that early sensory and late motor cortices appeared to
participate in preferentially local networks was also found across all de-
generate solutions. Furthermore, (1) each association network spanned
multiple lobes and (2) the components of multiple networks were spa-
tially adjacent. Therefore, the broad property that the human associa-
tion cortex consisted of multiple, parallel networks was found across
all degenerate solutions.

Similarly, we found that across 100 random initializations of the
7-network and 17-network LDA (Fig. 8), many association regions
appeared to participate in multiple networks, while large portions
of early sensory and late motor cortices participated in single
networks.
Discussion

Complex behaviors are subserved by distributed networks of spe-
cialized brain areas (Distler et al., 1993; Mesulam, 1998; Posner et al.,
1988; Shadlen and Newsome, 2001). In this work, we show that the
human association cortex consists ofmultiple, interdigitated distributed
networks in contrast to early sensory and latemotor cortices that partic-
ipate in preferentially local networks (Fig. 1). Many association regions
appear to participate in multiple networks, while large portions of early
sensory and late motor cortices participate in single networks (Fig. 2;
Supplemental Fig. 4). We demonstrate examples of overlapping
paralimbic networks (Fig. 3) and overlapping hierarchically organized
networks (Fig. 4). This architecture was detected and replicated in indi-
vidual subjects (Figs. 5 and 6). Additional control analyses confirmed
similar network organization regardless of global signal regression
(Supplemental Fig. 7) and across degenerate network estimates



Fig. 8. Pattern of network segregation and overlap replicated across degenerate LDA esti-
mates. The plots show the number of LDA networks each cortical region participates in for
the 7-network and 17-network LDAestimates in theGSP dataset, averaged across 100 ran-
dom initializations. Many association regions participated in multiple networks, while
large portions of early sensory and late motor cortices participated in single networks.
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(Figs. 7 and 8). The overlaps among networks may provide clues to the
network interactions that support human cognition.
Association cortex comprises interdigitated, segregated large-scale circuits

Our findings suggest that the early sensory and late motor cortices
participate in preferentially local networks (Fig. 1; also see Sepulcre
et al., 2010). In contrast, the association cortex comprises interdigitated,
partially overlapping large-scale circuits (Figs. 1 and 2; Supplemental
Figs. 1 and 2). The key features of this organization are that (1) each as-
sociation network consists of strongly coupled brain regions spanning
frontal, parietal, temporal, and cingulate cortices, and (2) the compo-
nents ofmultiple networks exist adjacent to each other and are partially
overlapping.

This organization is replicable across datasets (GSP and HCP) and
techniques (clustering, LDA and ICA; Fig. 1 and Supplemental Figs. 1
Table 1
Locations of default and dorsal attention network regions that participate in multiple network

Brain region MNI coordinates Network

Precuneus (PCUN) −8, −57, 36 Default
Lateral temporal cortex (LTC) −58,−11, −15 Default
Posterior parietal cortex (PPC) −43,−67, 39 Default
Medial prefrontal cortex (MPFC) −11, 46, −3 Default
Lateral intraparietal (LIP) area −28,−61, 60 Dorsal attention
Frontal eye fields (FEF) −26,−6, 48 Dorsal attention
and 2). Although details may differ, we can replicate this general orga-
nization across different number of estimated networks (Supplemental
Fig. 3), with and without global signal regression (Supplemental Fig. 7)
and across degenerate network estimates (Fig. 7). Finally, the organiza-
tion can be detected in individual subjects and replicated across sessions
in the HCP dataset (Figs. 5 and 6), indicating that this parallel architec-
ture is not an artifact of group averaging.

Given the convergence in cortical network organization across
datasets and methods, it is surprising that this parallel organization
has not been emphasized in previous ICA analyses.We suspect one pos-
sible reason is that thewinner-takes-all approach allows us to juxtapose
the spatial organization of different networks in one single map (top
row of Fig. 1), as opposed to more sophisticated approaches allowing
formultiplememberships (bottom rows of Fig. 1). The parallel architec-
ture is easily appreciated in the top row of Fig. 1, but is less clear in the
bottom rows, even though the estimated networks are extremely simi-
lar (88% overlap in the HCP dataset). Furthermore, most previous anal-
yses (e.g., Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca et al.,
2006; Smith et al., 2009) visualized the estimated networks (compo-
nents) using brain slices, making it difficult to appreciate complex topo-
graphic relationships.

Estimates of segregation and overlap of functional connectivity networks

In general, network overlaps occur throughout association cortex
(Fig. 2a). These overlaps do not exclusively co-localize with the pres-
ence of a border (Fig. 2b; Table 1; Supplemental Fig. 4). We exclude
these boundary regions in our analyses (Fig. 2b; Table 1; Supplemental
Fig. 4) because they may reflect uncertainties in the network estima-
tions (c.f. Power et al., 2013). The default and dorsal attention networks
have the largest proportions of brain vertices participating in multiple
networks (Fig. 2b; Supplemental Fig. 4). These results can be replicated
with different number of networks (Supplemental Fig. 5), different
thresholds (Supplemental Fig. 6) and across degenerate network esti-
mates (Fig. 8).

Wewill focus on thedorsal attention anddefault networks in the fol-
lowing sections. However, we should emphasize that regions in other
association networks also participate inmultiple networks. Our empha-
sis on the default and dorsal attention networks may simply be due to
their large sizes and our exclusion of regions close to network bound-
aries. This necessarily precludes investigation of the smaller regions of
any network, though examples of regions possessing multiple network
membership can be found in all networks at the resolution examined.

For example, there are regions in the posterior cingulate sulcus por-
tion of the ventral attention network (at or near area 5 Ci; Scheperjans
et al., 2008a, 2008b) at least 10 mm away from any network bound-
aries, which also participate in the dorsal attention network (rows 4
and 5 of Fig. 1). This is consistent with the correlations (Fox et al.,
2006; Yeo et al., 2011) and close functional relationships (Corbetta
and Shulman, 2002; Corbetta et al., 2008) between the two networks.
Corbetta et al. (2008), as part of a review, noted that a region of right
prefrontal cortex overlapped the dorsal and ventral attention systems,
providing a candidate region for allowing interactions between the oth-
erwise distinct systems (also see Asplund et al., 2010). The present re-
sults suggest the cingulate is also a potential point of interaction with
the caveat that, for all such observations, it is difficult to knowwhether
s.

Distance to clustering boundaries Distance to winner-takes-all LDA boundaries

16 mm 19 mm
27 mm 29 mm
16 mm 15 mm
17 mm 10 mm
18 mm 14 mm
14 mm 11 mm
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there is true spatial convergence or distinct modules are present below
our level of resolution. With this caveat in mind, we now focus our at-
tention on two examples of overlapping networks.

Overlapping parallel paralimbic networks

Evidence from both human imaging and non-human primate ana-
tomical tract tracing suggest the existence of a network of brain regions,
known as the default network, involved in internal mentation (for re-
views, see Buckner et al., 2008; Binder et al., 2009). These regions in-
clude the medial temporal lobe, posterior medial cortex (precuneus
and posterior cingulate cortex), medial prefrontal cortex, inferior parie-
tal cortex and lateral temporal cortex.

Recent evidence (Andrews-Hanna et al., 2010; Laird et al., 2009;
Leech et al., 2011; Yeo et al., 2011) suggests functional heterogeneity
within the default network. In particular, Andrews-Hanna et al. (2010)
suggested that the posterior cingulate cortex (PCC) and the (anterior)
medial prefrontal cortex (MPFC) form the core of two overlapping de-
fault sub-networks. Our current analysis extends Andrews-Hanna's re-
sults, suggesting that the precuneus (PCUN), medial prefrontal cortex
(MPFC), lateral temporal cortex (LTC) and posterior parietal cortex
(PPC) participate inmultiple paralimbic networks that overlap tradition-
al default network regions (Fig. 3). In particular, our analysis highlights
the LTC, which appears to participate in all four paralimbic networks.

Previous results have suggested functional heterogeneity within the
posterior medial cortex (Fornito et al., 2012; Laird et al., 2009; Leech
et al., 2011;Margulies et al., 2009). Our results also suggest the presence
of such heterogeneity. For example, the PCC appears to preferentially
participate in paralimbic networks 1 and 4 (Fig. 3), while PCUN (asterisk
in Fig. 3) preferentially participates in paralimbic networks 1, 2 and 4.

While we have focused on its involvement in paralimbic networks
(Fig. 3), the PCUN region may also participate in a network that promi-
nently includes the specific rostral regions of prefrontal cortex (row5 in
Supplemental Figs. 1 and 2), although the involvement is clearer in the
LDA estimates than in the ICA estimates. Since the rostral prefrontal cor-
tex is implicated in tasks requiring complex rule application (e.g., Badre
and D'Esposito, 2007), this network might be involved in higher-order
cognitive control. This may be consistent with heterogeneity of the
precuneus previously reported, such as “Cognitive/Associative Central
Precuneus” in Margulies et al. (2009) and “Fronto-parietal Network”
in Fornito et al. (2012).

Overlapping hierarchical networks in a canonical sensory-motor pathway

While the early sensory and late motor cortices mostly partici-
pate in single networks (Fig. 2b; Supplemental Fig. 4), there are ex-
ceptions. For example, overlaps between the sensory and motor
networks with the dorsal attention network in association cortex
(Fig. 4) may be expected from the non-human primate connectivity
anatomical studies (Felleman and Van Essen, 1991) and may be in-
volved in the hierarchical flow of information among sensory and
motor areas.

The canonical sensory-motor pathway, including retinotopic visual
cortex, the MT+ complex, parietal area LIP and the FEF, has been well
characterized in the monkey (Andersen et al., 1990; Colby and
Goldberg, 1999; Gold and Shadlen, 2007; Maunsell and Van Essen,
1983; Shadlen and Newsome, 2001). The idea is that visual information
propagates from early visual areas to MT+, which constrains decision
processes arising from interactions with LIP and FEF in the upper stages
of the hierarchy. The anatomical connectivity among the areas within
this pathway has been extensively explored in nonhuman primates
(Felleman and Van Essen, 1991; Maunsell and Van Essen, 1983). In
the human literature, this pathway has been studied both in relation
to spatially directedmovements and also in relation to spatial attention,
with components of thepathway sometimes referred to as thedorsal at-
tention network (Corbetta and Shulman, 2002).
This visual hierarchy was tested in Yeo et al. (2011) via a series of
seed-based functional connectivity (also see Sepulcre et al., 2012b).
The seed-based analysis was necessary because the winner-takes-all
approach does not capture information about interactions among re-
gions that fall in separate networks (Yeo et al., 2011). In contrast, the
LDA estimate of cortical networks detects overlap among functional
networks comprising early retinotopic visual areas and other compo-
nents of this sensory-motor processing stream that were not previously
appreciated (Fig. 4).

In particular, the estimated human LIP homologue is involved in all
four networks in Fig. 4, including a network comprising mostly regions
in the occipital lobe (network 1), a network comprising mostly regions
in occipital and parietal lobes (network 2), a network comprisingmost-
ly regions in parietal and frontal lobes (network 3) and a higher associ-
ation network spanning parietal, temporal and frontal lobes (network
4). Therefore networks 2 and 3 may serve as a bridge between early vi-
sual cortex (network 1) and higher association cortex (network 4). The
FEF region is preferentially involved in the association networks (Net-
works 2–4), but less so in the early visual network (network 1), consis-
tent with the fact that FEF occupies a higher position than LIP in the
sensory-motor hierarchy (Felleman and Van Essen, 1991; Maunsell
and Van Essen, 1983).

Parallel architecture, network interactions and human behavior

The neurophysiological literature has long recognized the impor-
tance of network interactions to cognition (e.g., Akam and Kullmann,
2010; Buschman et al., 2012; Buzsáki and Draguhn, 2004; Fries, 2005).
In recent years there has been increasing interest to use human brain
imaging to study how functionally distinct networks interact to support
complex behaviors (Bassett et al., 2011; de Pasquale et al., 2012; Fornito
et al., 2012; Spreng et al., 2010, 2013).

Our current work suggests that a particularly robust form of interac-
tionmight take place in association cortex (Figs. 2, 3, 4 and 8). This is con-
sistent with anatomical evidence that heteromodal association regions
serve as critical gateways for information processing (Goldman-Rakic,
1988; Jones and Powell, 1970; Mesulam, 1998; Pandya and Kuypers,
1969).While we have emphasized long-distance interactions by focusing
on overlapping regions at some distance from network boundaries
(Figs. 2b, 3 and 4), the interdigitated topography of networks in associa-
tion cortex suggests a stereotypic spatial architecture, throughwhich net-
work components can locally interact with adjacent components of other
functionally distinct networks (also see Power et al., 2013). In other
words, local interactions among networks may occur within recurrent
spatial patterns or motifs (Bullmore and Sporns, 2009; Power et al.,
2011; Rubinov and Sporns, 2010; Sporns and Kotter, 2004). The expecta-
tion is that these local and distant interactions among functionally distinct
networks facilitate emergent complex behaviors.

This network organization can be detected and replicated in individ-
ual subjects, although the details might vary across sessions and across
subjects, especially in the association cortex (Figs. 5 and 6). This vari-
ability in network organization may underlie individual differences in
behavior or even variability in behavior within a subject. This would
be consistent with recent results showing that intersubject variability
in functional connectivity is the highest in the association cortex, with
regions predicting individual differences in cognitive domains predom-
inantly located in regions of high connectivity variability (Mueller et al.,
2013).

The distributed association networks converge on cortical regions
that are late to develop (Hill et al., 2010) and are expanded in the
human brain relative to the macaque brain (Van Essen and Dierker,
2007). Therefore, these distributed association networks have likely
been under strong selective pressure to expand in recent hominin evo-
lution. Consequently, even though this parallel architecture may also
exist in monkeys (Goldman-Rakic, 1988), the details of the interdigita-
tion and overlaps (Figs. 1, 3 and 4) may differ from monkeys and
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contribute to human cognition (see Buckner and Krienen, 2013 for
discussion).

Limitations and future work

Tract tracing and physiological studies in monkeys and cats suggest
that the cerebral cortex forms spatially organized circuits that include
prominent connections with subcortical structures (for review, see
Haber, 2003; Jones, 2007; Strick et al., 2009). In the present work we
limit our analysis to the cerebral cortex, and therefore do not consider
interactions between the cerebral cortex and subcortical structures.
This limitation is partly methodological. Subcortical structures and the
cerebellum can have significantly lower signal-to-noise ratio than the
cerebral cortex and so are typically analyzed separately in functional
connectivity studies (Di Martino et al., 2008; Zhang et al., 2008;
Krienen and Buckner, 2009; Buckner et al., 2011; Choi et al., 2012;
Dobromyslin et al., 2012; but see Habas et al., 2009; O'Reilly et al.,
2010). Our (unpublished) observations suggest that including subcorti-
cal structures with cortical analyses would probably not alter the esti-
mated cortical networks, even though subcortical results might be
suboptimal. Consequently, we focus on the cerebral cortex in this
paper. We are currently exploring techniques that can more effectively
jointly analyze cortical and subcortical structures.

In addition, this work focuses on the spatial relationships among
resting-state functional connectivity networks. The parallel architecture
and overlaps in hierarchical and paralimbic networks suggest stereo-
typic spatial motifs in network interactions. However, our (essentially)
correlational analyses will miss vital details of the dynamics of network
interactions (Allen et al., in press; Chang and Glover, 2010; de Pasquale
et al., 2012; Hutchison et al., 2013; Smith et al., 2012). Our resting-state
analyses will also miss changes in network interactions as a result of
task performance (Bassett et al., 2006, 2011; Fornito et al., 2012;
Spreng et al., 2010). These potential issues are outside the scope of
this paper and will be addressed in future work.

The network organization we found is robust across datasets (GSP
and HCP), preprocessing (with and without global signal regression),
number of networks, degenerate/alternate network estimates and tech-
niques (clustering, LDA and ICA). Although details vary, corroboration
across the different analyses increases our confidence that the general
organization of cortical networks is intrinsic to the data. However, we
caution that the agreement among different techniques (clustering,
LDA and ICA) may simply result from underlying assumptions common
across the techniques. For example, while there are similarities between
gradient-based (Cohen et al., 2008) and clustering/modularity-based
parcellations (Power et al., 2011; Yeo et al., 2011), the boundaries in cer-
tain brain regions (e.g., visual cortex) can be qualitatively different (Wig
et al., in press; Buckner and Yeo, submitted for publication). While the
current approaches capture important features of cortical organization
it is unclear to what degree they will overlap with gradient-based
parcellation methods and what those differences might mean.

Conclusions

The human association cortex consists of multiple, interdigitated
large-scale networks that, while partially overlapping, possess predom-
inantly parallel organization. This architecture can be detected and rep-
licated in individual subjects. Many, but not all, association regions
appear to participate in multiple networks, including those that lie
some distance from estimates of network boundaries. The present
work suggests that it is possible to consider both the divergent and con-
vergent nature of connectivity in the human cerebral cortex using func-
tional connectivity MRI. Our results suggest that segregation and
interdigitation of networks in association cortex may be a true feature
of cortical organization and not an artifact of the methods used to esti-
mate their topography.
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